
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
OFFICE OF SCIENCE AND TECHNOLOGY

METEOROLOGICAL DEVELOPMENT LABORATORY

MDL SOFTWARE DEVELOPMENT PROCESS (SDP)
FOR THE MODEL OUTPUT STATISTICS (MOS) PROJECT

DRAFT
February 13, 2004

 MDL MOS SDP
2/13/04

 DRAFT

i

TABLE OF CONTENTS

Section Page

1.0 Introduction.. 1
1.2 Document Organization....................................... 1
1.3 Supporting Documents.... 2

2.0 Project Organization and Responsibilities................... 3
2.1 MOS Project Definition Overview............................. 3
2.2 Other Organizations and Contractors......................... 3

3.0 Project Management.. 4
3.1 Responsibilities.. 4
3.2 Management Process.. 4
3.2.1 Planning Process.. 5
3.2.2 Project Tracking and Oversight.............................. 6

4.0 Software Development Process................................ 8
4.1 Responsibilities.. 9
4.2 Metrics... 10
4.3 Detailed Software Process Activities........................ 11
4.3.1 Requirement Analysis.. 11
4.3.2 Design.. 12
4.3.3 Code and Unit Testing....................................... 14
4.3.4 Software Integration Testing................................ 15
4.3.5 System Integration Testing.................................. 17

5.0 Documentation... 18
5.1 Formal Documentation.. 18
5.2 Informal Documentation...................................... 20
5.3 Software Development Files.................................. 20

6.0 Reviews... 21
6.1 Peer Reviews.. 21
6.2 Code Walkthroughs... 22
6.3 Management Reviews.. 22
6.3.1 Project Status Reviews...................................... 22
6.3.2 Development Reviews... 22

7.0 Testing... 24

8.0 Configuration Management.................................... 25

9.0 Software Standards.. 26

10.0 Development and Testing Environment......................... 27

11.0 References.. 27

 MDL MOS SDP
2/13/04

 DRAFT

ii

TABLE OF CONTENTS (continued)

Figures

Figure 4.0-1 Data Flow of Software Development Process............. 8
Figure 4.1-1 Development Organization.............................. 9

Tables

Table 3.2.1-1 Planning Input and Output, Entrance and Exit
Criteria, Process Control, and Metrics................. 6

Table 4.3.1-1 Requirements Analysis Input and Output, Entrance
and Exit Criteria, Process Control, and Metrics........ 12

Table 4.3.2-1 Design Input and Output, Entrance and Exit Criteria,
Process Control, and Metrics........................... 13

Table 4.3.3-1 Code and Unit Testing Input and Output, Entrance
and Exit Criteria, Process Control, and Metrics........ 15

Table 4.3.4-1 SwIT Input and Output, Entrance and Exit Criteria,
Process Control, and Metrics.......................... 16

Table 4.3.5-1 System Integration Testing Input and Output,
Entrance and Exit Criteria, Process Control, and
Metrics... 17

 MDL MOS SDP
2/13/04

 DRAFT

1

MDL SOFTWARE DEVELOPMENT PROCESS FOR THE
MODEL OUTPUT STATISTICS (MOS) PROJECT

1.0 INTRODUCTION

The Meteorological Development Laboratory (MDL) Software Development Process
for the Model Output Statistics (MOS) project establishes the software and
development processes that is used throughout the software development life
cycle. This document describes the processes and procedures that are used to
design, implement, and test software.

1.1 DOCUMENT ORGANIZATION

The SDP is organized into the following ten sections.

Section 1 - The Introduction presents the purpose and scope of the plan,
an overview of the project, and related documentation.

Section 2 - The Project Organization and Responsibilities section
discusses the project organization and the responsibilities for the MOS
project and other organizations that interface with the project during
the development process.

Section 3 - The Project Management section describes a standard approach
and mechanism for project managers to plan, track, and measure the
software development process.

Section 4 - The Software Development Process section presents an
overview of the software development life cycle and describes the major
activities in each life cycle phase. It establishes the software
development process, methods and standards to be used in the development
of MOS software.

Section 5 - Documentation describes documentation created and the method
for the retention of that documentation

Section 6 - Reviews describes the types of reviews, what is being
reviewed, when reviews are employed and policies and procedures associ-
ated with each review

Section 7 - Testing explains the concept and activities employed in
testing MOS software.

Section 8 - The Configuration Management section describes the concepts
and activities used for the management of the software development and
test products.

Section 9 - Software Standards identifies the standards pertaining to
software development including coding standards and design rules.

Section 10 - The Environment section describes the hardware and software
environments used to develop and test MOS project software.

 MDL MOS SDP
2/13/04

 DRAFT

2

1.2 SUPPORTING DOCUMENTS

Other important documents related to this document include:

MDL Standards, Guidelines and Procedures (NWS 2003a) - This document
contains the software standards used in the development of MOS software
and contains the set of procedures and guidelines to be used by the
development team to standardize the development process and ensure that
it is a repeatable process.

 MDL MOS SDP
2/13/04

 DRAFT

3

2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

This section describes the responsibilities within the MOS project and the
Government and Contractor organizations that interface with the project during
the development of application software.

2.1 MOS PROJECT DEFINITION OVERVIEW

The objective of the MOS project is to develop objective guidance for weather
elements contained in public, aviation, marine, fire weather, and hydrological
service forecasts for projections of 3 hours to 14 days in advance. To
develop new techniques for generating objective guidance with emphasis on
probabilistic and high-resolution gridded guidance. To generate and dissemi-
nate objective guidance products. The MOS project consists of three tasks:

Statistical Forecast Development - Develop and improve objective
techniques for predicting weather elements needed in official NWS
forecasts for projections ranging from 3 hours to 14 days in advance.

Advanced Meteorological Applications - Investigate and apply scientific
approaches to produce interpretive guidance on high resolution grids and
from ensembles, and to apply advanced Geographical Information System
and statistical techniques to the output of objective forecast models.

Operations and Software Support - Design, evolve, implement, and
maintain systems to produce, disseminate, and archive objective guid-
ance.

2.2 OTHER ORGANIZATIONS AND CONTRACTORS

MDL staff must interface regularly with other organizations inside and outside
of MDL that play a critical role in the development and deployment of MOS
software. These organizations include:

RS Information Systems (RSIS) - RSIS is responsible for managing and
staffing MDL’s system administration group and for providing software
developers who participate in MOS development.

OST/MDL/Product Generation Branch (PGB) - PGB is responsible for
developing and implementing software that ingests and displays MOS
products on an AWIPS platform.

Office of Science and Technology (OST) - OST has overall management
responsibility for the MDL programs.

National Centers for Environmental Prediction (NCEP) - NCEP manages the
operational computer system and is responsible for implementing new
products to the MOS forecast package.

 MDL MOS SDP
2/13/04

 DRAFT

4

3.0 PROJECT MANAGEMENT

This section describes a standard approach and mechanism for project managers
to plan, track, and measure the software development process.

3.1 RESPONSIBILITIES

The responsibilities of project management are described below.

Director, MDL - Overall responsibility for the software development
effort, initiates change requests and is the Software Engineer (SE) for
MOS software development.

Project Manager - The Project Manager is responsible for reviewing the
plans, making the project commitments, and reviewing any changes.
Specifically, the Project Manager oversees cost, schedule, and inter-
faces with other NWS organizations. The Project Manager is responsible
for initiating change request, defining tasks, participating in all re-
quirement, design, and code walkthroughs, and works with the Library
Team (LT). The Project Manager meets with the LT every other week to
present proposed changes for approval and/or further action. The
Project Manager conducts regular oversight reviews with the MDL Director
and MDL Deputy Director.

Task Manager - Statistical Forecast Development - The Statistical
Forecast Development Lead is responsible for overseeing the development
and improvement of objective techniques for predicting weather elements
needed in official NWS forecasts for projections ranging from 3 hours to
14 days in advance.

Task Manager - Advanced Statistical Applications - The Advanced Statis-
tical Applications Lead is responsible for applying advanced
statistical forecast techniques to the output of objective forecast
models, including model ensembles or MOS guidance, to enhance the
prediction of weather elements needed in official NWS forecasts.
Emphasis is on improving probabilistic forecasts for projections ranging
from 1 to 14 days in advance.

Task Manager - Operations and Software Support - The Operations and
Software Support Lead is responsible for the design, implementation, and
maintenance of systems used to produce, disseminate, and archive
objective guidance.

3.2 MANAGEMENT PROCESS

Managing a software project requires careful planning, control of activities,
and tracking against the planned activities. Once a plan is developed, the
actual activities are tracked against the plan to determine whether there is
any deviation from the plan. Metrics (as defined in Section 4.2) are used to
measure performance and suggest process improvement.

This management process will mature as the program progresses. This means
that the plans are living documents. This management process emphasizes early
planning and risk analysis. The plans are reviewed, revised, and expanded
based on the most recent knowledge of the program at key milestones, when the
scope changes, and at regular intervals.

 MDL MOS SDP
2/13/04

 DRAFT

5

3.2.1 PLANNING

Software planning involves developing estimates for the work to be done,
establishing the necessary commitments, and defining a plan to complete the
work. The plan provides the basis for initiating the software effort and
managing the work. Accurate estimations of cost and schedule up front and
adherence to required staffing levels and equipment usage are a key factor to
completing a project within budget.

Planning is a continuous process. As the design proceeds, certain design
decisions may change the plan or schedule. As change requests (e.g., new
deficiencies, enhancements, or requirements) are identified, the process must
be repeated and documentation produced describing the impact of any changes to
the cost and schedule.

The following functions are required during the Planning step. The responsi-
ble party for each function is shown in bold type.

Prepare MOS Change Requests - MOS Change Request (MCRs) can be prepared
by MDL Director, Project Manager, or NCEP for new requirements, enhance-
ments, hardware and system changes. For developmental software, these
change requests are usually established by the needs of the developer;
operational software is bound by the constraints of the NCEP operational
environment.

Create Tasks - Tasks are prepared by Project Manager for new require-
ments, enhancements, hardware and system changes. Tasks are linked to
MCRs.

Estimate Level of Effort (ELOE) - For each task the Project Manager
estimates the size of the task and the ELOE. The size of the task
includes the number of software components required and lines of code.
The ELOE is measured by estimating the number of labor hours required to
develop, test, document, and maintain the software.

Prepare Project Tracking Information (PTI) - The Project Manager
prepares a Staffing Plan and a Development Schedule.

Table 3.2.1-1 describes the input, output, entrance and exit criteria, process
controls and metrics for this Planning step along with the responsible
parties.

 MDL MOS SDP
2/13/04

 DRAFT

6

Table 3.2.1-1. Planning Input and Output, Entrance and Exit Criteria,
Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

MOS Change Request Form received Project Manager,
MDL Director, NCEP

Input MOS Change Request Form prepared
Other development schedules

Project Manager,
MDL Director, NCEP

Output Project Tracking Information (PTI) Project Manager

Exit
Criteria

PTI completed Project Manager

Process
Controls

Management review MDL Director

Metrics None

3.2.2 TRACKING AND OVERSIGHT

Software tracking and oversight involve tracking and reviewing software
progress against the documented estimates, schedules, and plans, and adjusting
these based upon the actual data. This activity occurs throughout the
development effort.

Software tracking and oversight start as soon as the effort commences. The
development schedules are used as the basis for tracking and oversight
throughout the development life cycle. During development, actual data is
collected according to the process model. These data are analyzed at speci-
fied intervals against the plan. If the actual status of the program deviates
beyond an acceptable norm, corrective action is taken. Corrections made to
schedule, cost, or software sizes are reviewed with respect to each other.
Then, the schedule and any renegotiated commitments are revised and reviewed.

When modifying the schedule, the Software Manager (SM) keeps records that
explain the reasons for various corrective actions and the rationale for that
change. This information is useful for developing the lessons learned and
other postmortem analysis.

The following are reviews that are established to track development schedule.

Status Reviews - Status reviews, if necessary, are conducted with the
Project Manager and developer to review progress and address issues.
These can be conducted weekly or biweekly depending on the wishes of the
Project Manager.

Planned Reviews - Planned reviews are conducted at key periods during
the development cycle to review requirements, design, coding, testing,
and delivery. In addition, reviews are conducted to review code (e.g.,
code walkthrough) and other development products (e.g., peer reviews).
See Reviews (Section 6.0) for more information on these reviews.

MDL Staff Meeting - The MDL staff meeting is conducted weekly to
coordinate between MDL Director, Project Manager and Software Manager.

 MDL MOS SDP
2/13/04

 DRAFT

7

In addition, following information is used by the Project Manager to provide
tracking and oversight, and facilitate reporting to other NWS organizations.

Project Tracking Information (PTI)

• Development Schedule - High level schedule showing the development
activities (e.g., requirement review) and major checkpoints on a
time line.

• Staffing Plan - List of tasks per release with estimated level of
effort and identified Task Manager, Task Lead and development
staff.

• Development Checklist - Internal detailed checklist employed by
the management to track development progress and adherence to the
MDL Software Development Approach requirements (NWS 2004a).

See the MDL Standards, Guidelines, and Procedures (NWS2003a) for a PTI
template.

Metrics

- Information to guide process improvement (See Section 4.2).

 MDL MOS SDP
2/13/04

 DRAFT

8

4.0 SOFTWARE DEVELOPMENT PROCESS

This section describes the software development and maintenance process in
detail. Below are the major activities that should be accomplished during the
development of software.

C Requirements Analysis
C Design
C Coding and Unit Testing
C Software Integration Testing
C System Integration Testing

Some of these activities may not be necessary for specific types of projects.
The process is flexible and can be ordered to fit any of the popular paradigms
of software architecture including Waterfall, Rapid Prototype, or Evolutionary
models. Figure 4.0-1 shows the typical waterfall software development process
sequence with interrelationships, and significant checkpoints and reviews.

Figure 4.0-1: Data flow of the Software Development Process.

 MDL MOS SDP
2/13/04

 DRAFT

9

4.1 RESPONSIBILITIES

The development organization is shown in Figure 4.1-1 and defined below.
Depending on the size of the development effort, a staff member may be tasked
with multiple roles.

Figure 4.1-1. Development Organization

Task Lead - The Task Lead’s responsibilities leads the development of
the task. The Task Lead coordinate the activities of the developers and
reviewers. The Task Lead performs the requirement analysis, assists
with the design, reviews developers code and test procedures, and
assists the preparation of test plans and schedules. The Task Lead
reports to the Project Manager.

Library Team - The Library Team consisting of four (4) to six (6)
members is responsible for monitoring and testing proposed changes. The
Library Team meets with the Project Manager to present those proposed
changes for approval and/or further action.

Software Engineer - The Software Engineer is the chief architect and
approves all design and code walkthroughs.

Developer - The developer’s major responsibility is to code software
using the established coding standards, guidelines, and procedures.
After completing the coding phase, the developers go through the code
review process with their Project Manager. The developer is responsible
for creating test procedures, performing the unit testing, and submit-
ting a Development Ticket to the Library Team when coding is completed
and the software is ready for integration and final testing. The
developer is responsible for preparing all necessary external documenta-
tion.

Reviewers - The Reviewers role is to participate in the various reviews
described in Section 6.0 of this document. The reviewers can be the
Project Manager, Software Engineer, technical staff members, developers,
specialists, or users whose backgrounds give them insight into the
material to be discussed.

Library Team Leader – The Library Team (LT) Leader assigns incoming
Development Tickets to one or more members. Prior to each LT meeting,
the LT Leader review any changes made by the Software Engineer. The LT
Leader schedules meetings of the LT.

 MDL MOS SDP
2/13/04

 DRAFT

10

Library Team Member – Library Team (LT) Member will be assigned incoming
Development Ticket by the LT Leader. The LT Member is responsibility
for assessing the significance of revised codes, verifying that all
codes have gone through the MOS project software process, and running
pre-established test cases with the updated libraries to verify func-
tionality and performance.

4.2 METRICS

The Project/Software Managers use software metrics gathered to evaluate key
characteristics of the software being developed, the process employed, and the
associated management indicators of progress. A successful metrics program
depends on accurate and consistent data collection and presentation. The
validity of the data should be determined prior to any analysis activity.
Under these circumstances, the metrics can provide early warning of potential
software development problems. In turn, this should lead to early problem
resolution.

Graphic presentation of the metrics can reveal developing trends, which, when
analyzed as related sets, highlight anomalies that might otherwise be over-
looked. Management can then determine their significance and corrective
action can be taken. Results are used to improve the ongoing project and are
reported at management reviews.

Types of metrics include number of software requirements, number of software
requirement changes, product size, level of effort, cost, schedule, defects,
and computer resource utilization. In the future, MDL will develop composite
metrics to indicate productivity, quality, production rate, and stability.

Metrics used by the MOS project are identified in Section 4.3 of this docu-
ment.

 MDL MOS SDP
2/13/04

 DRAFT

11

4.3 DETAILED SOFTWARE PROCESS ACTIVITIES

For each step in the process, this document defines:

Entrance Criteria - criteria needed to start the activity,
Input - products necessary for this step,
Functions - process and tasks of each step,
Metrics - set of measurement data resulting from the work products,
Responsibility - who is responsible for completing that activity,
Output - products of activity,
Exit criteria - criteria for completing the activity, and
Process controls - controls put into place to insure quality.

Guidelines and process descriptions necessary to complete the activity are
kept in the MDL Standards, Guidelines and Procedures (NWS 2003a).

4.3.1 REQUIREMENTS ANALYSIS

The software development processes are requirements driven. Requirements are
a formal statement of an attribute to be possessed by the product or a
function to be performed by the product. These requirements form an agreement
between developer and customer. Requirement analysis provides a means for
establishing and maintaining requirements so that both the customer and the
developers are working from the same set of expectations.

The completion of the Planning (Section 3.2.1) activity results in a task(s)
being assigned to a Task Lead or Developer. The Task Lead or Developer
defines and develops software requirements and prepares a Requirements
Description (RD). The Requirement Description is a set of detailed software
requirements derived from the MOS Change Request (MRC). Requirements can
address operation concepts, functional and user interface specifications,
performance and capability, external interfaces, security, error handling,
installation, configuration, language, maintenance, and the use of legacy
software. For data-driven and data-intensive systems, the Requirement
Description can include data sources, types, and rates.

A Requirement Review is held to finalize the understanding of requirements
with the Project Manager and obtain approval.

Note that requirements can be dynamic and change as the design is evaluated
and development is conducted. As these changes occur, the changes should be
made to the Requirements Description and those changes presented at the
appropriate review.

The following functions are required during the Requirements Analysis step.
The responsible party for each function is shown in bold type.

Define and develop software requirements - The Task Lead or Developer
defines the set of software and derived requirements for this project
and prepares a Requirement Description.

Analyze requirements - A peer review is conducted by the Task Lead or
Developer to analyze the requirements to ensure, at a minimum, trace-
ability, completeness, clarity, testability, safety, and validity.

Perform Requirements Review - A Requirements Review is conducted by the
Task Lead or Developer. Participants should include Project Manager.
Action items (if necessary) are documented and delivered to the approval
body and tracked through closure by the Task Lead or Developer.

 MDL MOS SDP
2/13/04

 DRAFT

12

Approval - The Requirements Review is formally approved by Project
Manager. The approval can be provided verbally, in an email, or memo.

Update Project Planning Information (PTI) - The Project Manager updates
the Development Schedule and Staffing Plan with any changes that result
from a better understanding of the requirements.

Table 4.3.1-1 describes the input, output, entrance and exit criteria, process
controls and metrics for this Requirements Analysis step along with the
responsible parties.

Table 4.3.1-1. Requirements Analysis Input and Output, Entrance and
Exit Criteria, Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Project Tracking Information (PTI) pre-
pared

Project Manager

Input MOS Change Request MDL Director,
Project Manager,
NCEP

Output Requirements Description Task Lead,
Developer

Exit
Criteria

Requirements Description approval Project Manager

Process
Controls

Requirements Review

Management Approval

Task Lead, Developer

Metrics To Be Determined (TBD)

4.3.2 DESIGN

The Design phase will establish a complete software design to be used by the
developers of the software. The software components are defined in terms of
purpose, use cases, interfaces, data requirements, data structure, error
handling, storage and throughput, timing requirements, and diagnostic consid-
erations. The relationship of components is defined in terms of data flow
between them and external interfaces, and the control flow between components.

A Design Review is held to finalize the understanding of design with the
system engineering community and obtain approval to code the software.
Approval of the design is provided by the Project Manager and Software
Engineer.

The following functions are required during the Design step. The responsible
party for each function is shown in bold type.

Define software components - The Task Lead or Developer defines the set
of software components to be developed or modified.

Prepare design - The Task Lead or Developer defines components and
interfaces, relationships and data flows, physical structure, user
interface, data structure, and critical test scenarios.

 MDL MOS SDP
2/13/04

 DRAFT

13

Peer Review - Peer reviews are conducted by the Task Lead or Developer
to review selected design components. Participants could include the
Task Lead and other Developers.

Perform Design Review - A Design Review is held to understand a basic
design when new software development is undertaken for either develop-
mental or operational codes. No strict process is followed. The review
process depends on the code that needs to be written. If a developmen-
tal code that needs to be completed does not deviate much from a
previous code, the review process is very informal. A more extensive
review is undertaken in instances when a code departs extensively from
previously written software.

A Design review is conducted by the Task Lead or Developer. Partici-
pants should include Project Manager and Software Engineer. Action
items (if necessary) are documented and delivered to the approval body
and tracked through closure by the Task Lead or Developer.

Approval - The Design Review is formally approved by the Software
Engineer and Project Manager. The approval can be provided verbally, in
an email, or memo.

Assign developers - The Project Manager assigns developers to the
software components.

Update Project Tracking Information (PTI) - The Project Manager updates
the Development Schedule and Staffing Plan.

Table 4.3.2-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this Design step along with the responsible parties.

 Table 4.3.2-1. Design Input and Output, Entrance and Exit Criteria,
Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Requirements Description Approval Project Manager

Input Requirements Description Task Lead, Developer

Output Design documents

Updated Development Schedule

Task Lead, Developer

Project Manager

Exit
Criteria

Design completed and approved Project Manager,
Software Engineer

Process
Control

Design Review Project Manager,
Software Engineer

Metrics TBD

 MDL MOS SDP
2/13/04

 DRAFT

14

4.3.3 CODE AND UNIT TESTING

Once the Design Review is approved, the developers assigned to the Coding
activity can begin.

Coding is performed uniformly across software products using defined standards
and guidelines. The objectives of source code written are as follows:

• Meets requirements,
• Contains correct logic and interfaces and handles data structures,

properly as specified in the design documentation,
• Complies with coding standards,
• Compiles successfully without any warning or error messages,
• Follows good coding techniques,
• Includes proper internal documentation,
• Follows reasonable and understandable size limitations, and
• Considers reuse, portability, and system independence.

The following functions are required during the Code and Unit Testing step.
The responsible party for each function is shown in bold type.

Prepare code - The code is created or modified by the Developer accord-
ing to the design documents and MDL Standards, Guidelines and Procedures
(NWS 2003a).

Create Test Procedures - Test procedures are created by the Developer to
test the modification to the code. Additional test procedures are
identified to ensure the modification has not affected the existing
code. Test Procedures should be prepared in accordance with guidance
contained in the MDL Standards, Guidelines and Procedures (NWS 2003a).

Test Procedure Peer Review - The Developer should conduct a peer review
of the test procedures.

Perform Unit Testing - The Developer should perform unit testing in
accordance with MDL Standards, Guidelines and Procedures (NWS 2003a).
In most instances, the software developer is responsible for checkout of
the software to ensure functionality. It is the responsibility of the
developer to be sure that answers are correctly obtained by comparing
the answers of older codes. The Project Manager supervises the testing.

Perform Code Walkthroughs - Once the code has been completed and Unit
testing has been completed, the Developer prepares and performs a Code
Walkthrough. Participants in the code walkthrough include the Project
Manager and Software Engineer. This is typically an informal process,
however, a Code Walkthrough form needs to be filled out and defects
recorded.

Fix Defects - The Developer fixes defects found during the Code
Walkthrough.

Prepare Draft MDL Office Note - The Developer prepares a first draft of
the formal program documentation which is usually incorporated into a
MDL Office Note.

Submit Development Ticket (DT) - The Developer submits a Development
Ticket to the MOS Library Management System. Development Tickets are
used for any and all changes so that there is a permanent record of all
changes. Each ticket is also printed out and stored as a hard or backup
copy.

 MDL MOS SDP
2/13/04

 DRAFT

15

Table 4.3.3-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this Code and Unit Testing step along with the
responsible parties.

 Table 4.3.3-1. Code and Unit Testing Input and Output, Entrance and
Exit Criteria, Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Design Completed Task Lead, Developer

Input Design Document Task Lead, Developer

Output Code, Test procedures, Code Walkthrough
documentation, Draft Office Note, Development
Ticket

Developer

Exit
Criteria

Code is tested, walkthrough is completed,
defects are addressed, draft office note is
completed

Developer

Process
Controls

Code Walkthrough

Peer Reviews

Developer

Developer

Metrics TBD

4.3.4 SOFTWARE INTEGRATION TESTING (SwIT)

The MOS project established an internal process to test software in an
integrated environment and maintain developmental software libraries. A
rotating Library Team consisting of 4 to 6 people is responsible for monitor-
ing and testing Development Tickets submitted by the developers. The Library
Team meets every other week with the Project Manager to present those proposed
changes for approval and/or further action.

The following functions are required during the SwIT step. The responsible
party for each function is shown in bold type.

Assign a Development Ticket to a Library Team Member - The Library Team
Leader assigns Development Tickets to a member of the library team.

Assess Code Changes - The Library Team Member assesses the code change
and insures that the code has gone through each step of the MOS software
development process (e.g., design review, code walkthrough)

Run Test Procedures - The Developers run the assigned test procedures
for the Development Ticket and record results. The process steps are as
follows:

C Make a test version of the library to be changed. Copy all pieces
of the current library to a working directory.

C Copy the new or modified codes for that library to a test library
(/nfsuser/g06/mos2k/libteam/test on the IBM).

C Make a new linkable of that library. Most libraries have a script
called make__lib.sh. Use this to create the linkables.

 MDL MOS SDP
2/13/04

 DRAFT

16

C Test the new library
- Create new executables for any code that will be affected by

the changes.
- If an enhancement or error modification is made, test each

situation using the current executable for that code, and a
new executable that has been created with the Library Team
member’s new library.

C Update the mos2k library on the IBM
- Copy the updated version of the existing code into the mos2k

library (/nfsuser/g06/mos2k). Make notations in the README
file of all new and modified codes that were added to the
library. Run the make__lib.sh script to update the
linkables. This script works by compiling all .f codes.

Conduct an Integration Readiness Review (IRR) - The Library Team meets
every other week with the Project Manager to present those Development
Tickets to determine the readiness for System Integration Testing.
Action items (if necessary) are documented.

When the proposed changes are approved, the Library Team prepares a
report for the Project Manager to outline any changes made, and also
tells the Project Manager and operations team of any changes that must
be moved back to the HP and operational libraries, respectively.

Approval - The IRR is formally approved by the Project Manager and
Software Engineer. The approval can be provided verbally, in an email,
or memo.

Update libraries for Software Engineer - The Project Manager will move
all modified or new codes from the IBM to the Software Engineer’s
working environment on the workstations after notification by the
Library Team.

Table 4.3.4-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this SwIT step along with the responsible parties.

 Table 4.3.4-1. SwIT Input and Output, Entrance and Exit Criteria,
Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Development ticket received and assigned to library
team

Developer

Input Development Ticket Developer

Output Tests are completed and checked out Library team member

Exit
Criteria

Testing completed, Integration Readiness review
conducted, and software is approved

Library Updated

Library team

Project Manager

Process
Control

Integration Readiness Review Library team

Metrics TBD

 MDL MOS SDP
2/13/04

 DRAFT

17

4.3.5 SYSTEM INTEGRATION TESTING (SIT)

System Integration Testing (SIT) takes place in the NCEP environment. When
software additions or changes are ready to be implemented in the NCEP
operational environment, a member of the MOS team completes an NCEP Change
Request Form. This CR describes what additions or changes were made so that
NCEP understands what changes they are implementing. NCEP will run the
modified code and notify the MOS team. The MOS team reviews results of the
test runs and makes sure the information is correct. If the test fails, the
MOS team notifies NCEP and another test is arranged.

The following functions are required during the SIT step. The responsible
party for each function is shown in bold type.

Prepare NCEP Change Request - The Operations Task Lead creates an NCEP
Change Request Form.

NCEP Runs Test Procedure - NCEP runs the assigned test procedures for
the NCEP Change Request, records the results, and provides MOS project
management with those results.

Operational Readiness Review (ORR) - The Operations Task Lead will
review, approve or reject the test. If the test fails, another test is
arranged with NCEP.

Prepare Final MDL Office Note - The Developer prepares a final of the
MDL Office Note.

Table 4.3.5-1 describes the input, output, entrance and exit criteria, process
control, and metrics for this SIT step along with the responsible parties.

 Table 4.3.5-1. System Integration Testing Input, Output, Entrance and
Exit Criteria, Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Integration Readiness review conducted and soft-
ware is approved

Library team

Input Completed software and draft MDL Office Note Operations Task Lead

Output NCEP Test Results, Final Office Note NCEP, Developer

Exit
Criteria

Successful ORR Operations Task Lead

Process
Control

Operational Readiness Review Operations Task Lead

Metrics TBD

 MDL MOS SDP
2/13/04

 DRAFT

18

5.0 DOCUMENTATION

Documentation is continually prepared to communicate and archive valuable
development information. This information is used by management, system
integrators, users, developers, and support and maintenance personnel. All
documentation is updated periodically and archived for all software develop-
ment in the Software Development Files (SDFs).

5.1 FORMAL DOCUMENTATION

This section identifies what formal external documentation is produced for
software developed by the MOS project. Internal documentation requirements
and standards are covered under the appropriate software standards described
in Section 9.0 of this document.

Requirements Description - Description of the requirements is based on
the MCR. Guidelines for preparing requirements and a checklist are
contained in the MDL Standards, Guidelines and Procedures (NWS 2003a).

Design Document - Documentation used by the MOS project to capture the
design of an application. Guidelines for preparing a design and a
checklist are contained in the MDL Standards, Guidelines and Procedures
(NWS 2003a).

Project Tracking Information (PTI) - See the MDL Standards, Guidelines
and Procedures (NWS 2003a) for a PTI template.

• Development Schedule - High level schedule showing the development
activities (e.g., requirement review) and major checkpoints on a
time line.

• Staffing Plan - List of tasks per release with estimated level of
effort and identified Task Manager, Task Lead and development
staff.

• Development Checklist - Internal detailed checklist employed by
the management to track development progress and adherence to the
MDL Software Development Approach requirements (NWS 2004a).

Test Plan - Document describing testing to be performed on an applica-
tion. This plan includes focus of testing, listing of test procedures
for the by test categories, test environment, test tools, and schedule
and staffing. Guidelines for preparing a test plan are contained in the
MDL Standards, Guidelines and Procedures (NWS 2003a).

Test Procedures - One or more test procedures are identified to evaluate
the functional or structural condition of the code. Test procedures are
designed based on specific functional requirements or components of code
structure. Each test procedure will identify the software requirements
validated by the test. Guidelines for preparing test plans and test
procedures are contained in the MDL Standards, Guidelines and Procedures
(NWS 2003a).

 MDL MOS SDP
2/13/04

 DRAFT

19

MOS Change Request (MCR) - The MCRs are prepared for new requirements,
enhancements, hardware, and system changes. For developmental software,
these change requests are usually established by the needs of the
developer; operational software is bound by the constraints of the NCEP
operational environment. The MCR includes the following information:

CC Tracking number
C Purpose
C Originator (name and title)
C Title of change
C Description of change
C Type of change (hardware, software, documentation)C
C Date submitted
C Required change date including rationale

MOS Development Ticket (MDT) - The MOS Development Ticket documents a
software change to be reviewed by the Library Team. The Development
Ticket includes the following information:

C Ticket number
C Submitted by
C Name of code
C Library
C Description
C Dependencies
C Priority
C Location of code and test data
C Verification that each step in the development and testing process

was completed (e.g., Requirement review, design review, code
walkthrough,, test procedures, documentation).

NCEP Change Request (NCR) - The NCR is prepared by MOS project personnel
to install operational software on NCEP’s IBM. The NCR include the
following information:

C Date submitted for approval
C Information about the person approving and submitting the NCR
C - name, phone number, title, routing code, email address
C NCEP personnel assigned the NCR
C Registration number
C Date scheduled to be implemented
C Memo Date
C Production program Name
C Production Job Name(s)
C Package Name
C Location of:

- Source
- Job/Task Script(s)
- Model (USH) Script(s)
- Parameter Fields
- Fixed Fields

C Purpose of Program
C Description of Change
C Implementation Instructions

Office Notes - Modification or addition to the MDL Office Note 00-02 is
the formal documentation prepared for the software routines that are
part of the MOS-2000 system. See the MDL Standards, Guidelines and
Procedures (NWS 2003a) for more information concerning the content and
style of the Office Note.

 MDL MOS SDP
2/13/04

 DRAFT

20

5.2 INFORMAL DOCUMENTATION

Informal documentation includes:

• Briefing slides,

• Design information and documentation, including rationale support-
ing design decisions,

• Peer review, design review, and code walkthrough results, check-
lists, and comments,

• Test results, and

• Meeting minutes, memos, action items, checklists, and
correspondences.

5.3 SOFTWARE DEVELOPMENT FILES

Software Development Files (SDFs) contain all formal and informal information
describing the development or maintenance of the software product. The SDF
should be maintained online as much as possible, to facilitate searching and
inclusion into documentation. It may contain media copies or references to
controlled media copies of supporting data.

 MDL MOS SDP
2/13/04

 DRAFT

21

6.0 REVIEWS

This section defines the process for the five types of internal reviews that
are performed during the development of software. These reviews are catego-
rized as:

 • Peer reviews
 • Code walkthroughs
 • Project Status Reviews

• Development Reviews

Some of these reviews are conducted internal to the MOS project and, in most
cases, do not include customer participation.

Our experience has proven the effectiveness of internal reviews throughout the
software development and maintenance process. This is an extremely
cost-effective approach for early identification and resolution of technical
and management problems and improved communication within the software project
team. Furthermore, the types of reviews defined in this section work equally
well on all sizes and types of software projects. However, each type of
review must be exercised in an appropriate manner, as defined in this section,
or substantial benefits may be degraded.

The Software Manager responsibility includes participation in selected
reviews, usually as an observer, and verification that the reviews are taking
place in conformance with the process. This responsibility includes periodic
auditing of selected SDFs to ensure that the material is updated and current.

6.1 PEER REVIEWS

Peer reviews are conducted according to a documented procedure. Staff is
trained in peer review objectives, principles, and methods from the perspec-
tive of both leader and participant.

The concept behind peer reviews is that the author/developer of a product
(i.e., specification, design, unit of code, test procedures) gets help from a
colleague who is familiar with the product. Together, they discuss in detail
a specific portion of the overall product. The author presents the product
element to the colleague, item by item, who in turn raises questions and
suggestions. Application of the concept is simple and inexpensive.
One-on-one reviews are ad hoc. They are accomplished with only enough
planning necessary to solicit participation from the colleague and prepare the
product element to a state where it can be reviewed. Such reviews should
always be limited to two hours. Peer reviews usually examine a portion of a
product rather than the entire document, plan, specification, or design under
review. Because peer reviews impose only small blocks of time, this technique
is used frequently (typically many times in a given week) among the set of
people working that project. Notes are kept by the author of the product
element. No "list of issues" or action items result from peer reviews.

The MDL Standards, Guidelines and Procedures (NWS 2003a) contains guidelines
on how to conduct peer reviews.

 MDL MOS SDP
2/13/04

 DRAFT

22

6.2 CODE WALKTHROUGHS

Similar to peer reviews, code walkthroughs involve only technical staff. The
number of participants, counting the product author, ranges from three to six.
Scheduled code walkthroughs have a maximum duration of two hours. The focus
is on identifying technical issues and concerns, not solutions. As discussed
below, a moderator is assigned to keep the review focused only on technical
issues, rather than discussing solutions to issues. A list of the identified
issues is made during the review.

Follow-up code walkthroughs are conducted as appropriate to the importance of
the identified issues. The list of issues packaged with a minimal amount of
data about the review itself (e.g., date and members) are placed in the
Software Development Files (SDFs) for the product that was partially or fully
reviewed.

The MDL Standards, Guidelines and Procedures (NWS 2003a) contains guidelines
on how to conduct code walkthroughs.

6.3 MANAGEMENT REVIEWS

Management is responsible for resolving the technical, schedule, and resource
issues that are a significant risk to the project. Primary communication and
resolution mechanisms used by management are Project Status Reviews.

6.3.1 PROJECT STATUS REVIEWS

Project Status Reviews occur both on a periodic and event-driven basis.
Participants are the leads for the various elements of the project, for
instance, Project Manager and Task Lead, should be present. Technical
progress, plans, performance, and issues are discussed and tracked against the
baselined plans. Each attendee presents a summary of activities and issues
since the last Project Status Review as well as plans for the upcoming period.
The meeting focuses on open, significant issues. Anyone can present alterna-
tive solutions for those significant issues.

Project Manager should record all issues identified at the meeting as requir-
ing resolution. An action list is distributed by the Project Manager to the
meeting attendees. The Project Manager maintains the list and detailed
records of how each issue was resolved.

6.3.2 DEVELOPMENT REVIEWS

Development reviews are conducted upon the completion of a formal milestone.
Development reviews include:

Requirements Review - Presentation and request for approval of require-
ments.

Design Review - Presentation and request for approval of design informa-
tion.

 MDL MOS SDP
2/13/04

 DRAFT

23

Integration Readiness Review - Presentation of the readiness to proceed
to an operational platform for System Integration Testing. This review
should include:

• Verify that all development steps were completed
- including code walkthroughs

• review of the code to verify it meets The MOS project standards
• review of test procedures to verify that the software was ade-

quately tested
• perform ad-hoc testing of the software
• verify documentation is complete

- MDL Office Note, if necessary
- NCEP Change Request

• approve code for NCEP testing

Operational Readiness Review - Presentation of the readiness to move to
the NCEP operational platform.

• review testing performed by NCEP
• verify final version of Office Note is complete, if necessary
• approve code for operational use at NCEP

 MDL MOS SDP
2/13/04

 DRAFT

24

7.0 TESTING

The primary goal of all of the testing activities is to identify and remove
defects and to provide a standard approach for testing the MOS project
software.

The MOS project Test program is based on the following key concepts:

$ The testing approach is to provide an effective, repeatable,
software test process which is independent of the software lan-
guage, design methodology, and development environment,

$ The testing scope is to identify and remove all defects and also
to validate that software applications meets all requirements
allocated to them,

$ The testing strategy incorporates two basic points of view:
functional (user=s) and structural (program attributes). The
testing of each application will be designed to include adequate
coverage of both the functional and structural aspects,

$ The testing process will essentially follow a bottom-up approach.
The testing will begin at the lowest unit level and proceed upward
as units are integrated into the application,

$ Quality is designed into products using defined processes that are
continually monitored and updated to improve their efficiency, to
avoid recurring problems, and to maintain the desired quality of
resulting products.

The MDL Standards, Guidelines and Procedures (NWS 2003a) describes the
criteria, responsibilities and test strategy (i.e., test plans, procedures,
level of testing) necessary to provide an effective, repeatable software test
process which is independent of the test environment.

 MDL MOS SDP
2/13/04

 DRAFT

25

8.0 CONFIGURATION MANAGEMENT

The Configuration Management (CM) function ensures that the software develop-
ment process is followed and that the necessary metrics are collected.

The CM program is based on the following key concepts:

• The tools used (Library Management System) are customized to the
defined development life cycle,

• All code changes are documented and related to the appropriate
change document, and

• The change documents are customized to collect the necessary
metrics and to provide management, developers, and users with the
appropriate information in a timely manner, so as to identify
risks as early as possible.

The MOS Library Management System was developed to document changes that were
made to codes within the operational libraries of the MOS.

No formal Configuration Management System is used to manage development
software.

 MDL MOS SDP
2/13/04

 DRAFT

26

9.0 SOFTWARE STANDARDS

The critical importance of developing well documented and well-structured code
has become more obvious with time. Except for, possibly, some small pro-
grams/subroutines written exclusively to test an idea or structure that will
soon be discarded, Government developed software will be inherited and
maintained by others. It is imperative to follow good coding and documenta-
tion rules in the development of all code, and in particular code that is to
be handed off for use outside of MDL. Reasons include:

• With several people involved in a project, it is important that
guidelines be followed so that all can easily "read" another
person's program,

• Usually, it will fall to someone other than the originator to
modify or maintain a program at some time in the future. Again,
if a program has been written and documented according to pre-
scribed rules, revisions and maintenance are much easier,

• Standardization will reduce errors in coding. The eye and mind
become accustomed to "patterns," and a break in a pattern may be
an error,

• Converting a body of software from one computer system to another
is easier if it is all written and documented to the same stan-
dards, and

• New employees with little or no programming experience can be more
easily trained in good procedures if those procedures are written
down and everyone follows them.

In summary, the objectives of these guidelines are to enhance clarity,
testability, maintainability, and person-to-person and computer-to-computer
transferability of software throughout its life cycle. The following stan-
dards are contained in the MDL Standards, Guidelines and Procedures (NWS
2003a):

MDL FORTRAN Standards - The developmental software follows standards
established within MDL for all FORTRAN codes. Fortran77 conventions
with extensions are used on the Hewlett-Packard (HP) platform.

NCEP FORTRAN Standards - The operational software follows both MDL and
NCEP standards established for FORTRAN codes. The NMC Handbook docu-
ments the NCEP standards. The internal code documentation required by
the standards is enforced by an automated checking procedure before the
software is implemented in operations. On the NCEP IBM platform,
software must conform to Fortran95 conventions.

Scripting - UNIX scripting done for the Posix shell is used for the
operational software running in the NCEP environment.

 MDL MOS SDP
2/13/04

 DRAFT

27

10.0 DEVELOPMENT AND TESTING ENVIRONMENT

The development environment for MDL consists of legacy HP running a variety of
X software applications. The following HP equipment, broken out by floor, is
used for development:

10th floor - monsoon, cirrus, blizzard, ice, precip

11th floor - chinook

The operational environment at NCEP is an IBM supercomputer. It is the IBM
eServer P690 and FAStT500 Storage server that uses a FORTRAN 95 compiler on an
AIX UNIX platform.

11.0 REFERENCES

National Weather Service, 2003a: MDL Standards, Guidelines and Procedures,
Meteorological Development Laboratory, Office of Science and Technology,
NWS, National Oceanic and Atmospheric Administration, U.S. Department of
Commerce, (in preparation).

